RoboSoft 1st Plenary Meeting Pisa March 31 – April 1, 2014

Optimal energy-harvesting cycles for load-driven soft dielectric generators

E. Bortot*, R. Springhetti*, G. deBotton**, Massimiliano Gei*

*DICAM/Solid Mechanics, University of Trento, Italy **Dept. of Mechanical Eng., Ben-Gurion University, Israel

Poster 1.6

DIELECTRIC ELASTOMERS AS ELECTROMECHANICAL TRANSDUCERS

Prahlad et al., 2005

MOTIVATION – DEGs AS EMERGING TECHNOLOGY

 Research activity on soft homogeneous dielectric elastomer generator (DEG) started around 2007/08 (both theoretically and experimentally).

Relevant papers: Koh et al. (2009), Mc Kay et al. (2011), Foo et al. (2012), Appl. Phys. Lett.

 A large scale project just started in France for exploting sea-wave motion (by SBM Offshore that designed a large soft DE ring generators of 800mm diameter with multiple layers).

Kaltseis et al. (2012) APL

LOAD-DRIVEN DE GENERATORS: THE MODEL

Soft dielectric generator : homogeneous; neo-hookean; ideal dielectric; subjected to a plane strain state.

Four step load-driven cycle :

- 1. AB stretch of the layer by increasing the tensile load, constant charge;
- 2. BC increase in the charge by applying a voltage $\Delta \phi$, constant load;
- CD release the stretch by decreasing the tensile load: the voltage between the electrodes increase;
- 4. DA harvest the electrical energy by removing the charge surplus at constant

MODES OF FAILURE

DIELECTRIC ELASTOMERS are susceptible of SEVERAL MODES OF FAILURE:

ADMISSIBLE STATE REGION for the generator

= MAXIMAL ENERGY achievable during a cycle on the ELECTRICAL PLANE

= MAXIMAL ENERGY achievable during a cycle on the MECHANICAL PLANE

OF TRENTO - Italy

MODES OF FAILURE

DIELECTRIC ELASTOMERS are susceptible of **SEVERAL MODES OF FAILURE**:

- ELECTROMECHANICAL INSTABILITY (EMI)
- LOSS OF THE TENSILE STRESS STATE (S=0)

(EB)

(λ_u)

- ELECTRIC BREAKDOWN
- MATERIAL RUPTURE

ADMISSIBLE STATE REGION for the generator

= MAXIMAL ENERGY achievable during a cycle on the ELECTRICAL PLANE

= MAXIMAL ENERGY achievable during a cycle on the MECHANICAL PLANE

OF TRENTO - Italy

MODES OF FAILURE

DIELECTRIC ELASTOMERS are susceptible of **SEVERAL MODES OF FAILURE**:

- ELECTROMECHANICAL INSTABILITY (EMI)
- LOSS OF THE TENSILE STRESS STATE (S=0)
- ELECTRIC BREAKDOWN

(EB)

(λ_u)

• MATERIAL RUPTURE

UNIVERSITY OF TRENTO - Italy

ADMISSIBLE STATE REGION for the generator

= MAXIMAL ENERGY achievable during a cycle on the ELECTRICAL PLANE

= MAXIMAL ENERGY achievable during a cycle on the MECHANICAL PLANE

ADMISSIBLE STATES REGION

DIMENSIONLESS QUANTITIES

Mechanical plane

Electrical plane

OPTIMAL CYCLES FOR DIFFERENT λ_u

Optimal cycle for λ_u =1.5 with $E_{eb} \ge 0.5922$. The dotted curve EB corresponds to the transition between Cases 2a and 2b

Optimal cycle for λ_u =3 with $E_{eb} \ge 0.5922$

CONSTRAINED OPTIMIZATION PROBLEM

Expression for the dimensionless generated energy (energy density per unit shear modulus)

$$H_g = \frac{1}{2} (\lambda_A - \lambda_D) \left[\lambda_D \left(3\bar{\phi}_D^2 - 1 \right) + 2\lambda_A + 3\lambda_D^{-3} \right] \\ + \frac{1}{2} (\lambda_C - \lambda_B) \left[\lambda_B \left(3\bar{\phi}_B^2 - 1 \right) + 2\lambda_C + 3\lambda_B^{-3} \right]$$

The optimization problem is formulated as follows

find min
$$H_g[\lambda_A, \lambda_B, \lambda_C, \lambda_D]$$
 $\Lambda = [\lambda_A, \lambda_B, \lambda_C, \lambda_D]^T$

subjected to be active constraint $f[\lambda_A, \lambda_B, \lambda_C, \lambda_D] = -\lambda_C + \lambda_U = 0;$

and to the possible active constraints

$$\begin{aligned} h_1[\lambda_A, \lambda_B, \lambda_C, \lambda_D] &= S_{33}^D[\lambda_A, \lambda_B, \lambda_C, \lambda_D] \ge 0, \\ h_2[\lambda_A, \lambda_B, \lambda_C, \lambda_D] &= -\bar{E}_D^2[\lambda_A, \lambda_B, \lambda_C, \lambda_D] + \bar{E}_{eb}^2 \ge 0, \\ h_3[\lambda_A, \lambda_B, \lambda_C, \lambda_D] &= \bar{\phi}_B^2 \ge 0 \quad \text{i.e.} \quad \bar{\phi}_B \in \mathbb{R}, \\ h_4[\lambda_A, \lambda_B, \lambda_C, \lambda_D] &= \lambda_A - 1 \ge 0, \qquad h_5[\lambda_A, \lambda_B, \lambda_C, \lambda_D] = -\lambda_A + \lambda_U \ge 0, \\ h_6[\lambda_A, \lambda_B, \lambda_C, \lambda_D] &= \lambda_B - 1 \ge 0, \qquad h_7[\lambda_A, \lambda_B, \lambda_C, \lambda_D] = -\lambda_B + \lambda_U \ge 0, \\ h_8[\lambda_A, \lambda_B, \lambda_C, \lambda_D] &= \lambda_D - 1 \ge 0, \qquad h_9[\lambda_A, \lambda_B, \lambda_C, \lambda_D] = -\lambda_D + \lambda_U \ge 0. \end{aligned}$$

UNIVERSAL CURVE TO EXPLOIT THE FULL POTENTIAL OF A DE MATERIAL

The red curve is an "universal curve" showing the ideal combination of material parameters $E_{eb} - \lambda_u$ for which the maximum energy can be extracted. If the property pair (λ_u, E_{eb}) is located above this curve the optimal cycle will not depend on E_{eb} and the full potential is not exploited. Thus, in order to extract the maximum from a DEG it is recommended that the pair (λ_u, E_{eb}) be as close as possible to the curve.

GENERATED ENERGY FOR TWO MATERIALS

3M VHB-4910 and acrylonitrile butadiene rubber (NBR)

	$E_{eb_1} = 20 \text{ MV/m}$					$E_{eb_2} = 100 \text{ MV/m}$				
	$S_{\rm max}$	μH_g	$\Delta \phi / h_0$	λ_C	M-C	S_{\max}	μH_g	$\Delta \phi / h_0$	λ_C	M-C
Material	[kPa]	$[kJ/m^3]$	[kV/mm]			[kPa]	$[kJ/m^3]$	[kV/mm]		
VHB-4910	94.2	3.99	9.9	1.5	(2b)	87.0	5.33	14.62	1.5	(1)
NBR	94.2	0.37	15.4	1.024	(2a)	87.0	0.32	14.81	1.022	(1)
VHB-4910	246.3	7.60	2.5	3	(2b)	240.5	22.72	7.3	3	(1)
NBR	246.3	1.86	18.2	1.059	(2b)	240.5	2.48	23.3	1.064	(1)

FURTHER DEVELOPMENTS: VISCOELASTIC EFFECTS

